via stable bridged ions. Although thiiranium ions are more stable than the corresponding thiirenium ions, smaller differences in the k_o/k_a ratios than in halogen additions are expected and were indeed observed.

The case of halogen addition to aryl derivatives that seemingly occur via open ions, yet with large k_o/k_a ratios (ca. 10³), seemingly defies the above rationale. Here, other factors are probably involved: the differential electronic effect of the β -halogen linked to the intermediates,^{23b,24} the different stability of the π complex precursors,^{26c} the partial bridging of the transition states,²⁴ and differences in bonding energies could substantially favor the reactivity of alkenes over that of alkynes.

Finally, we wish to emphasize that the mechanism of electrophilic addition must be fully demonstrated before one undertakes to interpret the relative reactivities of alkenes and alkynes, since different modes of reaction may prevail. As an example, the syn additions of hydrogen halides^{8,21,27} and chlorine⁵³ in nonpolar or weakly polar solvents have been explained in terms of syn-oriented tight ion pairs which collapse to products before equilibration is attained. However, there is not, as yet, enough evidence to rule out an alternative mechanism, a formally forbidden $2\sigma + 2\pi$ suprafacial cycloaddition, which may become allowed⁵⁴ when the two molecules have sufficiently different polarity.

We are indebted to our colleagues G. Capozzi, V. Lucchini, and G. Scorrano for helpful discussion, to our co-workers cited in the references, and to C.N.R., Rome, for continuous financial support. G.M. thanks also the Chemistry Department of Texas Tech University, Lubbock, TX, for its hospitality during the preparation of the manuscript.

(53) R. C. Fahey and C. Schubert, J. Am. Chem. Soc., 87, 5172 (1965).
(54) N. D. Epiotis, J. Am. Chem. Soc., 95, 1191 (1973); N. D. Epiotis,
R. L. Yates, D. Carlberg, and F. Bernardi, *ibid.*, 98, 453 (1976).

¹³C NMR Chemical Shifts and the Microstructure of Polymers

ALAN E. TONELLI* and FREDERIC C. SCHILLING

Bell Laboratories, Murray Hill, New Jersey 07974 Received March 31, 1980

Just as the primary structures of proteins determine their biological functions, so too the microstructures of synthetic polymers fundamentally influence their unique physical properties. Whether a polymer is an amorphous glassy or rubbery solid with the ability to deform under stress without rupture or a crystalline solid possessing dimensional stability and high tensile strength depends on its microstructure, i.e., the detailed architecture of its long chains.

To determine the microstructure of the schematic vinyl polymer

the types and distribution of side chain substituents R, R', R'', R''', etc. must be specified along with their configurational arrangement, or stereosequence, as illustrated in Figure 1 for polypropylene, where all R, R', R'', R''', etc., are methyl groups. Furthermore, in terms of physical properties it is also important to know if head-to-head (H-H) or tail-to-tail (T-T) monomer addition

Alan E. Tonelli, born in Chicago in 1942, is a member of the Polymer Chemistry Research Department at Beil Laboratories, Murray Hill, NJ. He received a B.S. in Chemical Engineering from the University of Kansas in 1964 and a Ph.D. in Polymer Chemistry from Stanford in 1968, where he was associated with Professor Paul J. Flory. Dr. Tonelli's research interests include the conformations, configurations, and structures of synthetic and biological polymers and establishing their effects on the physical properties of polymers.

Frederic C. Schilling, born in Newberry, Mi, in 1945, also works in the Polymer Chemistry Research Department at Bell Laboratories. He received a B.S. in Chemistry from Wayne State University. Mr. Schilling's principal interest has been the study of polymers by NMR spectroscopy. or any branching occurs during polymerization.

Aside from X-ray diffraction studies of stereoregular, crystallizable polymers, there was no method for the direct experimental measurement of vinyl polymer stereosequence until the technique of high-resolution NMR was applied to polymers.¹ Of the two nuclei ¹H and ¹³C, which possess spin and are common to synthetic polymers, ¹H initially served as the spin probe in NMR polymer studies. However, though ¹H is more abundant than ¹³C, ¹H NMR spectra of polymers suffer from a narrow dispersion of chemical shifts and extensive ¹H-¹H spin-spin coupling. ¹³C NMR as currently practiced does not suffer from these difficulties.

The advent of proton-decoupled spectra recorded in the Fourier transform mode has catapulted ¹³C NMR spectroscopy into the position as the method of choice for determining polymer microstructure.²⁻⁴ The distribution of monomer units in binary and ternary copolymers,^{3,4} the stereoregularity of asymmetric vinyl polymers,⁴ the amounts and types of vinyl polymer defect structures⁵ produced by other than head-to-tail

F. A. Bovey, "High Resolution NMR of Macromeolecules", Academic Press, New York, 1972, Chapters III and VIII.
 G. C. Levy and G. L. Nelson, "Carbon-13 Nuclear Magnetic Res-

(2) G. C. Levy and G. L. Nelson, "Carbon-13 Nuclear Magnetic Resonance for Organic Chemists", Wiley-Interscience, New York, 1972, Chapter 7.

(3) A. R. Katritzky, D. E. Katritzky, and D. E. Weiss, Chem. Br., 12, 45 (1976).
(4) J. C. Randall, "Polymer Sequence Determination", Academic

(4) J. C. Randall, "Polymer Sequence Determination", Academic Press, New York, 1977.

(5) F. A. Bovey, F. C. Schilling, T. K. Kwei, and H. C. Frisch, Macromolecules, 10, 559 (1977).

0001-4842/81/0114-0233\$01.25/0 © 1981 American Chemical Society

Accounts of Chemical Research

Figure 1. ¹³C NMR spectra at 25 MHz for PP's dissolved (20% w/v) in 1,2,4-trichlorobenzene at 140 °C. Schematic representation illustrates m (meso) and r (racemic) dyads and polymer chain tacticity. Isotactic \propto ...mmmmm...., syndiotactic \propto ...rrrr..., atactic or heterotactic \propto ...mmrmrrmr.....

addition of monomer units, and the presence of branching⁶ have all been fruitfully studied with highresolution ¹³C NMR spectroscopy. As an example, in the case of polypropylene (PP) by employing different catalysts and altering polymerization conditions, polymers with different stereoregularities can be produced. The ¹³C NMR spectra of isotactic, atactic, and syndiotactic PP are presented in Figure 1. By comparing the spectra in Figure 1, the isotactic and syndiotactic resonances in the "atactic" PP spectrum can be identified.

This approach to the assignment of ¹³C NMR polymer spectra requires preparation of polymers or model compounds possessing known microstructural features. Furthermore, as can be seen from the expansion of the ¹³C NMR spectrum of "atactic" PP⁷ presented in Figure 2, many resonances appear in addition to those assignable by comparison to the spectra for isotactic and syndiotactic PP (see Figure 1).

An example of the richness in detailed microstructural information provided by ¹³C NMR is presented in Figure 2a. In the methyl carbon region of the ¹³C NMR spectrum of "atactic" PP we observe roughly 20 resonance peaks out of a possible 36 corresponding to stereosequences at the heptad level¹ (see Figure 3a). This means that ¹³C NMR spectroscopy can distinguish among the majority of different arrangements possible for a given methyl carbon with the three nearest neighboring methyls on either side along the PP chain. The ¹³C NMR spectrum of PP is sensitive to stereosequences extending over six backbone bonds. It is precisely this long-range sensitivity to microstructural detail which makes ¹³C NMR potentially so valuable in determining polymer structure.

To realize this potential the connections between microstructural features and the corresponding chem-

Figure 2. (a) ¹³C NMR spectrum at 90.52 MHz of the methyl carbon region in atactic PP in 20% w/v *n*-heptane solution at 67 °C. (b) Simulated spectrum obtained from calculated chemical shifts, as represented by the line spectrum below, assuming Lorentzian peaks of <0.1 ppm width at half-height.

Figure 3. (a) Portion of a polypropylene chain in the all-trans, planar zig-zag conformation containing a heptad stereosequence. (b) Newman projections along bond nine in (a) illustrating the γ effect on the central methyl carbon (CH₃)₉.

ical shifts must be established. The ability to predict the ¹³C NMR chemical shifts expected for each type of carbon atom in all possible structural environments would clearly be valuable, permitting the full potential of this spectroscopic technique to be realized and thereby eliminating the need to synthesize model compounds and polymers of known microstructure.

¹³C NMR studies⁸⁻¹¹ of paraffinic hydrocarbons have led to substituent rules useful in the prediction of their chemical shifts. If a carbon has substituents (carbon atoms) in the α and/or β position, then for each such substituent its resonance is shifted ca. 9 ppm downfield

⁽⁶⁾ F. A. Bovey, F. C. Schilling, and W. H. Starnes, Jr., Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 20 (2), 160 (1979).

⁽⁷⁾ F. C. Schilling and A. E. Tonelli, Macromolecules, 13 270 (1980).

⁽⁸⁾ H. Spiesecke and W. G. Schneider, J. Chem. Phys., 35, 722 (1961).

⁽⁹⁾ D. M. Grant and E. G. Paul, J. Am. Chem. Soc., 86, 2984 (1964).

 ⁽¹⁰⁾ L. P. Lindeman and J. Q. Adams, Anal. Chem., 43, 1245 (1971).
 (11) F. A. Bovey, "Proceedings of the International Symposium on Pacromolecules" Bio de Jeneiro, July 26-31, 1974; F. B. Mano, Ed.

Macromolecules", Rio de Janeiro, July 26-31, 1974; E. B. Mano, Ed., Elsevier, Amsterdam, 1975, p 169.

Table I
¹³ C NMR Chemical Shift Differences $\Delta \nu$ (ppm) of the 9-Methyl Carbons in
3,5,7,9,11,13,15-Heptamethylheptadecane Stereoisomers

stereoisomer	$T = 20 \ ^{\circ}\mathrm{C}, \ \gamma = -5.4$		$T = 80 \ ^{\circ}\mathrm{C}, \ \gamma = -5.4$		$T = 140 \ ^{\circ}\mathrm{C}, \ \gamma = -5.2$	
	obsd ¹⁸⁻²⁰	calcd ²³	obsd ¹⁸⁻²⁰	calcd ²³	obsd ¹⁸⁻²⁰	calcd ²³
mmmmmr	0	0	0	0	0	0
rmmmrr	-0.39	-0.33	-0.30	-0.28	-0.22	-0.21
mrmmrr	-0.68	-0.61	-0.59	-0.52	-0.41	-0.41
mmmrrr	-0.80	-0.64	-0.77	-0.70	-0.76	-0.69
rmmrrm	-0.80	-0.74	-0.83	-0.76	-0.76	-0.72
rmmrmr	-0.91	-0.90	-0.96	-0.91	-0.91	-0.85
rrmrrr	-1.09	-1.02	-1.04	-1.00	-0.91	-0.90
rrmrmm	-1.25	-1.22	-1.18	-1.17	-1.04	-1.04
mrmrmr	-1.25	-1.25	-1.18	-1.18	-1.04	-1.05
mrrrrr	-1.53	-1.58	-1.54	-1.45	-1.45	-1.45
rmrrrr	-1.82	-1.84	-1.75	-1.77	-1.58	-1.60
mmrrmr	-2.07	-2.15	-1.90	-1.99	-1.69	-1.76

(deshielding effect) from the chemical shift of an unsubstituted carbon. On the other hand γ substituents produce an upfield chemical shift of 2–3 ppm (shielding effect). It is this shielding effect produced by γ substituents which can be employed to predict the ¹³C NMR chemical shifts observed in polymers.

Although the source of the γ effect is not completely understood,¹² it is apparent that it is conformationally sensitive.^{13,14} Not only must a carbon atom have a γ substituent¹⁵ to experience the associated upfield chemical shift, but the γ substituent must also be in a gauche^{13,14} arrangement with the observed carbon, as depicted in Figure 3, for the (CH₃)₉ methyl carbon in the PP heptad fragment. As an example, the γ effect provides us a means for determining the amount of gauche character possessed by the central backbone bond 9 which determines the arrangement of carbon atoms (CH₃)₉ and (CH)₁₁, information that is fundamental to the conformational characteristics¹⁷ of a polymer chain.

To evaluate the effect of γ substituents on the ¹³C NMR chemical shifts observed in a polymer we must be able to estimate the amount of gauche character possessed by its constituent bonds and the magnitude of the shielding effect produced by a γ substituent in a gauche arrangement with an observed carbon. Rotational isomeric state (RIS) models have been developed¹⁷ for polymers by considering all backbone bonds each restricted to a few rotational states by thier inherent rotational barriers. For C-C single bonds usually three states, trans (t) ($\phi = 0^{\circ}$) and gauche $\pm (g^{\pm})$ ($\phi =$ $\pm 120^{\circ}$), are assumed (see Figure 3).

If the energy differences between the rotational states can be determined, then matrix multiplication techniques¹⁷ can be utilized to calculate properties of the chain, such as dimensions and dipole moments, which are averages over all of its many different conformations. In a like manner it is possible to evaluate the

 (16) H. Beierbeck and J. R. Saunders, Can. J. Chem., 54, 2985 (1976).
 (17) P. J. Flory, "Statistical Mechanics of Chain Molecules", Wiley-Interscience, New York, 1969. rotational state probabilities $P_t, P_{g\pm}$ for any given backbone bond in the polymer chain.

Calculation of ¹³C NMR Chemical Shifts in Polymers

Zambelli and co-workers¹⁸⁻²⁰ have synthesized several stereoisomers of the PP model compound 3,5,7,9,11,13,15-heptamethylheptadecane (HMHD) each with ¹³C-enriched methyl groups in the 9 position and have recorded their ¹³C NMR spectra (see Figure 3, where addition of terminal methyl groups to the PP heptad fragment depicted yields HMHD). This series of compounds affords an excellent test of the γ -effect method of calculating stereosequence-sensitive ¹³C NMR chemical shifts.

Suter and Flory²¹ developed a RIS model describing the conformational characteristics of PP. This conformational model correctly predicts the dimensions and their temperature dependence, the epimerization equilibria, and the vicinal ¹H NMR proton-proton coupling constants²² observed for PP and its oligomers in solution as a function of stereoregularity. Using thier RIS model we calculated²³ conformational probabilities for the 8th and 9th bonds in each HMHD stereoisomer (see Figure 3). These are the bonds about which rotation can produce gauche arrangements between (CH₃)₉ and (CH)₇ or (CH)₁₁.

The number of such γ interactions experienced by $(CH_3)_9$ in each stereoisomer was recorded and multiplied by a γ effect least squares fitted to achieve agreement with the observed ¹³C chemical shifts reported by Zambelli.²⁰ As can be seen in Table I, $\gamma = -5.3$ ppm successfully reproduces the ¹³C chemical shifts observed for $(CH_3)_9$ in the 12 synthesized stereoisomers of HMHD over the temperature range 20–140 °C. The long-range sensitivity of the $(CH_3)_9$ chemical shifts can be explained by the much shorter range γ interactions whose probabilities of occurrence are indeed predictably influenced by longer range stereosequence effects.

Polypropylene

The ¹³C NMR chemical shifts of the much shorter PP model compounds 3,5-dimethylheptane (m and r), 3,5,7-trimethylnonane (mm, mr or rm, rr), and 3,5,7,9-tetramethylundecane (mmm, mmr or rmm, mrm, rrm

⁽¹²⁾ K. Seidman and G. E. Maciel, J. Am. Chem. Soc., 99, 659 (1977).
(13) W. L. Earl and D. L. Vander Hart, Macromolecules, 12, 762 (1979).

⁽¹⁴⁾ W. Ritter, M. Möller, and H. J. Cantow, Polym. Bull., 2, 533 (1980).

⁽¹⁵⁾ For an alternate explanation of the γ effect, see ref 16. Beierbeck and Saunders¹⁶ believe that removal of a hydrogen on the β substituent and not the γ substituent itself is responsible for the upfield shifts caused by a gauche γ substituent. We have not been able to explain vinyl polymer ¹³C NMR spectra based on this interpretation.

⁽¹⁸⁾ A. Zambelli, P. Locatelli, G. Bajo, and F. A. Bovey, Macromolecules, 8, 687 (1975).

⁽¹⁹⁾ G. Gatti and A. Zambelli, cited in ref 20.

⁽²⁰⁾ Data of A. Zambelli as reported by A. Provasoli and D. R. Ferro, Macromolecules, 10, 874 (1977).

Figure 4. Comparison of measured (33 °C) and calculated ¹³C chemical shifts of the TCH isomers in several solvents. The most downfield resonance in each of the three spectral regions is assigned a 0.0-ppm chemical shift.

or mrr, rmr, rrr) have also been calculated with the Suter-Flory²¹ RIS model using $\gamma = -5$ ppm. Agreement between predicted and observed chemical shifts is excellent for all three carbon types (CH, CH₂, CH₃).^{24,25} With the confidence gained in our ability to predict the ¹³C NMR chemical shifts in PP model compounds using the Suter-Flory²¹ RIS model and $\gamma = -5$ ppm, we proceed to treat PP itself.

In Figure 2 we compare the observed spectrum of "atactic" PP with the chemical shifts calculated (simulated and line spectra) for each of the heptad stereosequences of the methyl carbon atoms.⁷ The agreement, and consequently the assignment of observed resonances to specific stereosequences, is excellent. In addition, Suter and Nuenschwander^{21b} have used our calculated chemical shifts to simulate the observed methylene carbon region of the ¹³C NMR spectrum of atactic PP also with excellent results.

It now becomes clear how the chirality of an α -CH

- (22) A. E. Tonelli, unpublished results.
 (23) A. E. Tonelli, *Macromolecules*, 11, 565 (1978).
 (24) A. E. Tonelli, *Macromolecules*, 12, 83 (1979).
- (25) S. Bertz, F. C. Schilling, and A. E. Tonelli, unpublished results.

Figure 5. Methylene region of the ¹³C NMR spectra (90.52 MHz) of atactic PVC solutions (20% w/v in 1,2,4-trichlorobenzene/ Me₂SO) at 120 °C with 2, 3, 5, 10, 15, 40, 60, 80, and 100% Me₂SO.

carbon seven bonds removed can influence the methyl resonance position. As an example, compare chemical shifts of the methyl heptad stereosequences 27.28, and 29. Each of these heptads contains the rrrr pentad and differs only in the terminal dyads (m or r). Yet the central methyl carbon in each heptad resonates at a different frequency resulting from small differences in the trans and gauche content of the backbone bonds adjacent to the observed methyl carbon (bonds 8 and 9 in Figure 3). Clearly the long-range stereosequence dependence of the ¹³C chemical shifts results from a predictable dependence of the much shorter range γ interactions due to changes in local bond conformations.

In addition, the same γ effect ($\gamma = -5$ ppm) has been employed to predict^{26,27} the ¹³C NMR chemical shifts observed²⁸⁻³² in ethylene-propylene copolymers as a function of monomer sequence and stereoregularity. Agreement between the observed and calculated chemical shifts is excellent.

Chloro-Substituted Polymers and Copolymers

The 2,4,6-trichloroheptanes (TCH)

- (26) A. E. Tonelli, Macromolecules, 11, 634 (1978).
- (27) A. E. Tonelli, *Macromolecules*, 17, 354 (1979).
 (28) A. Zambelli, "NMR Basic Frinciples and Progress", Vol. 4, P. Diehl, E. Fluck, and R. Kosfeld, Eds., Springer-Verlag, New York, 1971.
 (29) A. Zambelli, G. Gatti, M. C. Sacchi, W. O. Crain, and J. D. Rob-
- erts, Macromolecules, 4, 415, (1971). (30) J. M. Sanders and R. A. Komoroski, Macromolecules, 10, 1214
- (1977). (31) L. Zetta, G. Gatti, and G. Audisio, Macromolecules, 11, 763
- (1978).
- (32) A. Zambelli, M. C. Sacchi, and P. Locatelli, Macromolecules, 12, 282 (1979).

^{(21) (}a) U. W. Sutter and P. J. Flory, *Macromolecules*, 8, 765 (1975).
(b) U. W. Sutter and P. Nuenschwander, *ibid.*, 14, 528 (1981).

(a)

have been studied³³ as model compounds for the stereosequences in poly(vinyl chloride) (PVC). Figure 4 presents a comparison of the observed and calculated ¹³C NMR chemical shifts for the carbon atoms in the three stereoisomers of 2,4,6-trichloroheptane (TCH),³⁴ i.e., I \propto isotactic (mm), S \propto syndiotactic (rr), and H \propto heterotactic or atactic (mr or rm). The following γ effects were employed in the chemical shift calculations based on the RIS model derived from epimerization studies of TCH and PVC by Flory and Pickles:³³ γ_{CH_2} or CH₃CH = -2.5 ppm, $\gamma_{CH,CH_2 \text{ or } CH_3} = -5.0$ ppm, and $\gamma_{CH,CI}$ = -3.0 ppm, where $\gamma_{a,b}$ is the upfield shift observed at carbon a due to atom b, which is γ to a and in a gauche arrangement.

There is a close correspondence between the calculated and observed chemical shifts of the methyl and methine carbons in a variety of solvents. On the other hand, the chemical shifts observed for the methylene carbons are extremely solvent sensitive and appear to agree with the calculated shifts only when observed in acetone.

Solvent sensitivity of the methylene carbon chemical shifts is also observed in PVC (see Figure 5). Gradual addition of Me₂SO to PVC dissolved in 1,2,4-trichlorobenzene causes certain of the observed methylene resonances to shift dramatically, while the methine carbon region (not shown) is virtually independent of Me₂SO addition and agrees quite well with the predicted ¹³C chemical shifts calculated³⁴ to the pentad level of stereosequence.

The solvent-dependent behavior of the methylene carbon chemical shifts must be a specific nonconformational effect, because the same bonds are involved in the γ effects of both the methine and methylene carbons. Also the methylene carbons in the meso and racemic isomers of 2,4-dichloropentane exhibit³⁵ various degrees of nonequivalence in different solvents, and yet there are no nonhydrogen atoms γ to these methylene carbons. We are currently attempting to learn the origins of the solvent sensitivity of the methylene carbon chemical shifts observed in PVC and its model compounds, which is not observed in the spectra recorded for PP.⁷

With the knowledge of γ effects gained from our study³⁴ of PVC and its model compounds, we are able to calculate the ¹³C chemical shifts expected for carbon atoms in the various microstructures present in ethylene-vinyl chloride (E-VC) copolymers (see Figure 6). The necessary bond rotation probabilities are obtained from the RIS model developed by Mark³⁶ for E-VC copolymers.

The ¹³C chemical shifts predicted³⁷ for the methine and methylene carbons in E–VC copolymers are presented in Figure 6. Predicted methine carbon resonances occur in three well-separated regions encompassing nearly 6 ppm in overall spread due to different E and VC monomer sequence distributions. Methylene carbon chemical shifts are expected to range over 30 ppm depending on E–VC copolymer microstructure.

(35) I. Ando, Y. Kato, M. Kondo, and A. Nishioka, *Makromol. Chem.*, **178**, 803 (1977).

(36) J. E. Mark, Polymer, 14, 553 (1973).

Figure 6. (a) Representative microstructures in E-VC copolymers. ¹³C chemical shifts observed for reduced PVC⁴¹ and calculated at 100 °C for the methine (b) and methylene (c) carbons residing in the various E-VC microstructures illustrated here. The widths of the calculated resonances result from chemical shift dispersion produced by the stereoregularity of adjacent VC units.

δ_{CH2} (ppm)

-2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32

LVC2

Ho

LE3

ò

LE2 LVCI

The greater sensitivity of the methylene carbon chemical shifts to E–VC microstructure results³⁷ from from the different number of Cl atoms which may be β^{38} to a methylene carbon depending on E–VC monomer sequence. Each such β -Cl substituent serves to shift the methylene carbon resonance ca. +10 ppm downfield.³⁸

Also presented in Figure 6 is the 13 C NMR spectrum of partially reduced PVC, 39 which serves as a model 40 E-VC copolymer. Note the close correspondence 41 between observed and calculated 13 C chemical shifts in both the methine and methylene regions of the spectrum.

(37) A. E. Tonelli and F. C. Schilling, *Macromolecules*, 14, 74 (1981).
(38) J. B. Stothers, "Carbon-13 NMR Spectroscopy", Academic Press, New York 1972, pp 97-101.

- (39) W. H. Starnes, Jr., I. M. Plitz, D. C. Hische, D. J. Freed, F. C. Schilling, and M. L. Schilling, *Macromolecules*, 11, 373 (1978).
- (40) In the reduction of PVC^{41} Cl atoms are removed, yielding E–VC copolymers.

Figure 7. Methylene regions of the 25-MHz ¹³C NMR spectra of PVF₂ (a) and PVF (b) at 25% w/v in ethylene carbonate solution (95 °C). Spectra recorded with simultaneous proton and fluorine broad-band decoupling. The labeled line spectrum (a) represents the calculated ¹³C chemical shifts for PVF₂. The spreads in the calculated chemical shifts for PVF (b) are due to stereosequence effects.

The ¹³C chemical shifts calculated for E-VC copolymers also compare favorably³⁷ with the chemical shifts reported for the methine and methylene carbons in chlorinated polyethylenes by Keller and Mugge.⁴² It appears that comparison of the ¹³C NMR spectra of E-VC copolymers with the calculated chemical shifts presented in Figure 6 will aid in the determination of thier microstructure.

Fluoro Polymers

The ¹³C NMR spectrum of the methylene carbons in poly(vinylidene fluoride) (PVF_2) is presented in Figure 7a. Resonances of minor intensity are produced by head-to-head:tail-to-tail (H-H:T-T) defect structures which were not found to be present in PP or PVC. The line spectrum inserted in Figure 7a is calculated by using the RIS model developed for PVF_2 by one of the present authors⁴³ and the following γ and β effects: $\gamma_{CH_2CH_2} = -5.3$, $\gamma_{CH_2CF_2} = -2.2$, $\gamma_{CH_2F} = -3.8$, and $\beta_{CH_2,2F}$ = +8.0 ppm.

The observed effect of H-H:T-T defect structure on the ${}^{13}C$ chemical shifts of the PVF₂ methylene carbons are faithfully reproduced by the calculated shifts. This enables the assignment of minor resonances to specific

(42) F. Keller and C. Mugge, Faserforsch. Textiltech., 27, 347 (1976).

(43) A. E. Tonelli, *Macromolecules*, 9, 547 (1977). The RIS model developed in ref 43 correctly describes the observed dimension⁴³ and dipole moments (G. Khanarian, unpublished observations) of PVF₂.

CH₂ carbons in the vicinity of the defect.

When the γ and β effects derived from our ¹³C NMR study of PVF₂ are applied to poly(vinyl fluoride) (PVF), we obtain the results shown in Figure 7b. ¹³C chemical shifts calculated for the methylene carbons closely mimic the observed resonances. The effects of stereosequence and H-H:T-T defect structure are both accounted for successfully by the predicted chemical shifts. This agreement lends support to the γ effects derived for PVF₂ and provides confirmation for the RIS model developed for PVF by one of us.⁴⁴ We have for the first time in the case of PVF used the γ -effect method of calculating chemical shifts to obtain conformational information, as well as the usual microstructural details.

The γ and β effects used to calculate the ¹³C NMR chemical shifts in PVF₂ and PVF also lead to calculated chemial shifts⁴⁵ which agree with the resonances observed in two additional fluoro polymers, poly(fluoromethylene) and poly(trifluoroethylene). The assignments made by comparing calculated ¹³C chemical shifts with the observed spectra, such as in Figure 7, are confirmed by ¹⁹F NMR studies⁴⁶⁻⁴⁹ performed on the same polymers.

Concluding Remarks

As evidenced by the many examples discussed in this Account,⁵⁰ it appears possible to predict the ¹³C NMR spectra⁵³ of asymmetric polymer chains. Because of the nature of the method employed in calculating the ¹³C chemical shifts (γ effects), our ability to predict the ¹³C NMR spectrum of a polymer means we have knowledge of both its microstructure (stereosequence, monomer sequence, defect content) and its conformational characteristics. Obviously this information is fundamental to the many varied physical properties unique to polymers.

This approach would appear generally applicable to the study of ¹³C NMR chemical shifts in conformationally flexible organic molecules as evidenced by our successful prediction of the ¹³C chemical shifts in several small oligometric model compounds. The application of the γ -effect method of calculating ¹³C NMR chemical shifts to low molecular weight organic molecules would likely yield useful information regarding thier conformations and configurations.

We are indebted to Dr. R. E. Cais for unpublished data and helpful discussions and gratefully acknowledge the many comments and suggestions made by Dr. F. A. Bovey.

(44) A. E. Tonelli, Macromolecules, 13, 73 (1980).
(45) A. E. Tonelli, F. C. Schilling, and R. E. Cais, Macromolecules, 14, 560 (1981).

(46) V. M. Görlitz, R. Minke, W. Trautvetter, and G. Weisgerber, Angew. Makromol. Chem., 29/30, 137 (1973).

(47) R. C. Ferguson and E. G. Brame, Jr., J. Phys. Chem., 83, 1397 (1979).

(48) R. E. Cais, Macromolecules, 13, 806 (1980)

(49) A. E. Tonelli, F. C. Schilling, and R. E. Cais, in preparation. (50) The γ effect method has also been used successfully to calculate (50) The y effect method has also been used successfully to calculate the ¹³C NMR chemical shifts expected in polystyrene and its oligomers⁵ and in polypeptides.⁸²
 (51) A. E. Tonelli, *Macromolecules*, **12**, 252 (1979).
 (52) A. E. Tonelli, *J. Am. Chem. Soc.*, **102**, 7635 (1980).

(53) It appears⁴⁹ that the conformations, configurations, and defect structures of fluorine-containing polymers can also be studied by ¹⁹F NMR spectroscopy via the γ -effect method. In fact the γ effects experienced by fluorine atoms involved in three-bond gauche arrangements with either another fluorine or a carbon atom correspond to upfield chemical shifts of 10 to 30 ppm relative to their trans arrangement. $^{19}\mathrm{F}$ NMR provides a potentially more sensitive means than $^{13}\mathrm{C}$ NMR to determine the microstructures of fluorine-containing polymers because of the much larger γ effects experienced by the ¹⁹F nucleus ($\gamma_{F,F, or C} \simeq$ -10-30 ppm, $\gamma_{C,C \text{ or } F} = -2$ to -5 ppm).

⁽⁴¹⁾ If the differences between the β effects produced by secondary and tertiary carbons are accounted for, then the agreement is improved. and tertiary carbons are accounted for, then the agreement is improved. As an example, $\beta_{CHCLCH2} = +6.8$ ppm as deduced from data in ref 38 on 1-chloroalkanes, and $\beta_{CHCLCHCI} = +6.2$ ppm from ref 34. Methine carbons LVC in Figure 6 should be moved downfield 0.6 ppm and VC methine's upfield 0.6 ppm from the LE and VCD methine carbons, because LVC is β to two CH₂, LE and VCD are β to one CH₂ and one CHCl, and VC is β to two CHCl carbons. (19) F Velue and C Mugre Exceptionsh Textiltank 27, 247 (1976)